

Contents

1 Introduction 1

1.1 Concept and creation of orthogonal bases 6

1.1.1 Sampling full sine and cosine functions 7

1.1.2 Sampling half cosine functions 10

1.1.3 Sampling half sine functions . 12

1.1.4 Walsh-Hadamard transform . 14

1.1.5 Orthogonal wavelet matrix using Haar scaling and wavelet functions 16

1.1.6 Orthogonal wavelet matrix using Daubechies scaling and wavelet

functions . 21

1.1.7 Complex exponential functions (DFT) 21

1.1.8 Applications of DFT . 26

1.2 Creation of Bi-Orthogonal bases . 27

1.2.1 Bi-Orthogonal Wavelet matrix using Daubechies bi-orthogonal

scaling and wavelet functions 27

1.2.2 Bi-Orthogonal Wavelet matrix using spline scaling and wavelet

functions . 27

ii

1.2.3 Example 1: Real function . 31

1.2.4 Example 2: Complex function 33

1.3 Least Squares in Signal Processing . 34

1.3.1 Concept of Least Square fitting 34

1.3.2 Over and Underdetermined Systems 39

iii

Chapter 1

Introduction

Democratizing the signal processing with two mathematical tools/concepts taught in

high school. These are the concept of resolution of vectors in orthogonal directions and

the concept of least-square. If we want to make everything smart, clean and green; the

areas that is going to be vital are signal processing, information processing and pat-

tern classification (statistical and or deep learning). These are also the foundation for

burgeoning Data-Science. The computational foundation for all these is linear algebra.

This implies that if do not give strong emphasis to this topic in our undergraduate

curricula, education will become lopsided. In this article we are showing how linear

algebra/matrix algebra course can be enhanced by incorporating straight forward ap-

plications from various engineering disciplines. At first we will show how the concept

of orthogonality in linear algebra (also vector algebra) is extended to give strong foun-

dation for signal processing and classification. It can be taught in the first year of

engineering itself. Imagine how much a student will be excited if he is able to process

his own vital signals and signals from the surroundings (audio, video, mechanical vi-

brations etc) using the mathematics he is learning. We took signal processing as our

1

first topic because,

• This is required for all engineering, though at present the subject signal processing

is mainly taught to electrical sciences. This situation should change.

• Many consider this as one of the toughest subject to master.

Figure 1.1: Foundation and roof of signal processing

There are several reason for this feeling,

• A system point view and the associated terms like linearity, time invariance, lin-

ear time invariance, convolution etc is introduced at the beginning. Though this

2

is important, it need not be taught at the beginning. These concepts and asso-

ciated exercise problems turn away the students from the core concepts of signal

processing. At least digital signal representation can be understood even without

any of those concepts. What is more important is digital signal representation

using orthogonal bases and signal content modification.

• A complex exponential base is used to represent a signal. Most books (and also

teachers) are silent about why at all one should use complex quantities to analyze

and manipulate a real signal. All signals are real in nature. The appearance of

associated totally confuses even a smart student in electrical and communication

engineering. Complex numbers, in many books, appears out of the blue and stay

forever in the remaining part of the text leaving the student trembling throughout

the course. Instead, representation using real bases like DCT, Walsh Hadamard,

Haar etc should be introduced first.

• No geometrical and visual interpretation is given to the DFT formula. Most

students don’t know that the formula represent an inner product. The concept

of orthogonal basis is totally alien to undergraduate students.

• DTFT and Z-transform is introduced as a formula in a definition without telling

its need in digital signal processing.

3

In high school every kid is learning about resolution of forces. Forces in a plane are

resolved into two orthogonal directions, along x and y directions. This is how it is,

Figure 1.2: Illustration of force

The force can be represented as

F = Fx + Fy

This can be represented as

F = 〈F, base1〉 base1 + 〈F, base2〉 base2

Inorder to understand this with an example, consider a point in 2-dimension space

(3,4). This point (or vector in 2-dimension) can be represented using two trivial basis[
1 0

]T
and

[
0 1

]T
as,

4

[
3
4

]
= 3

[
1
0

]
+ 4

[
0
1

]

Analysis of a signal (a vector in n-dimension space) can be done by changing the basis.

Consider another sets of basis,

{[
1
1

]
,

[
1
−1

]}

In normalized form as, {[
1
/√

2

1
/√

2

]
,

[
1
/√

2

−1
/√

2

]}
The vector (3,4) can be represented as,

[
3
4

]
= a

[
1
/√

2

1
/√

2

]
+ b

[
1
/√

2

−1
/√

2

]

We show that most of the transforms appearing in signal processing is basically this

resolution operation extend to a vector in n-dimensional space. The concepts requited

from linear algebra are,

• Linear combination

• Inner product

• Orthogonality of vectors

• Vector space

• Orthogonal basis for vector space

5

• Change of basis

From linear algebra point of view, an n-tuple data vector x ∈ Rn can be represented

using a given orthonormal basis set as {base1, base2, base3, ..., basen} as,

x = (xT base1)base1 + (xT base2)base2 + (xT base3)base3 + ...+ (xT basen)basen

In the above expression, xT basei is a scalar quantity.

Question now is how to create useful orthogonal bases. Usefulness is decided ac-

cording to,

• Qualitative interpretation of the signal (signal content in terms of frequencies)

• Sparse representation of the signal for storing and transmission.

• Separating signal into useful components (need not be in terms of frequency com-

ponents)

1.1 Concept and creation of orthogonal bases

A continuous signal is sampled at uniform rate/interval. This ordered array is a vector

in n-dimensional vector space where n is the length of the signal (number of sampled

values). Its basis represented by columns of matrix is identity matrix of size n × n.

We can represent (or resolve) the vector using another set of basis (another set of n

unit orthogonal vectors). Let the basis vectors be real and form columns of a matrix

W . Then X = W Tx represents the transform coefficients. Let,w1, w2, w3, ...wn be the

columns of W . Then, X(k) = W T
k x. That is, X(k) is the inner product of x with kth

6

basis vector in W . If the inner product is zero, then the vectors are orthogonal to each

other.

1.1.1 Sampling full sine and cosine functions

We can create discrete orthogonal bases by sampling orthogonal bases in continuous

domain. One such set of bases is one that emerged from famous Fourier series. Fourier

series is about expressing signals in terms of sine and cosine harmonic functions. Read-

ers may refer Calculus book for more details. Consider a 1-D domain with duration

T and a single cosine wave that exactly fit the distance T. The frequency associated

with such a wave is 1/T. We call this wave as fundamental wave and the frequency as

fundamental frequency. Consider sine waves and cosine waves of frequencies which are

integer multiple of fundamental frequency 1/T. We can show that all these waves are

orthogonal in the range 0 to T as per the following definition of orthogonality. Two

functions f1(t) ,and f2(t) are orthogonal in the range T if,

T∫
0

f1(t)f2(t)dt = 0

It can be easily shown that the proposed harmonic functions satisfy above requirement.

Now, suppose we want 4 bases for representing a vector/signal in R4. Since we are

not specifying T, we develop a methodology which is independent of T. We know our

fundamental should make one full wave in time T, it is equal to angular movement of

2π. So, we sample the range 0 to 2π at intervals 2π/4 (in general,2π/N for N-tuple data).

Let, this be vector θ,

7

θ̂ =
(

0 1 · 2π
4

2 · 2π
4

3 · 2π
4

)
=
(

0 π
2

π 3π
2

)
Then the vectors, cos(0 · θ̂), cos(1 · θ̂), cos(2 · θ̂), sin(1 · θ̂) form the basis for R4. That

is, cos(θ̂) =
(

cos(0) cos(π
2
) cos(π) cos(3π

2
)
)
. Therefore, the orthogonal bases (row

wise) are,

cos(0 · θ̂) =
(

cos(0) cos(0) cos(0) cos(0)
)

=
(

1 1 1 1
)

cos(1 · θ̂) =
(

cos(0) cos(π
2
) cos(π) cos(3π

2
)
)

=
(

1 0 −1 0
)

cos(2 · θ̂) =
(

cos(0) cos(π) cos(2π) cos(3π)
)

=
(

1 −1 1 −1
)

sin(1 · θ̂) =
(

sin(0) sin(π
2
) sin(π) sin(3π

2
)
)

=
(

0 1 0 −1
)

Now we can normalize (make the norm to unity) by dividing each vector by its norm.

Then the orthonormal transform matrix (transpose of basis matrix) is created by writing

each normalized vector as the column of the matrix as follows.
1
2

1√
2

1
2

0
1
2

0 −1
2

1√
2

1
2
−1√

2
1
2

0
1
2

0 =1
2

−1√
2


Now consider the case of 8-tuple data. The vector θ is,

θ̂ =
(

0 1 · 2π
4

2 · 2π
4

3 · 2π
4

4 · 2π
4

5 · 2π
4

6 · 2π
4

7 · 2π
4

)
=
(

0 π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

)
Now the 8 bases can be created as follows,

cos(0 · θ̂), cos(1 · θ̂), cos(2 · θ̂), cos(3 · θ̂), cos(4 · θ̂), sin(1 · θ̂), sin(2 · θ̂), sin(3 · θ̂)

cos(0 · θ̂) =
(

cos(0) cos(0) cos(0) cos(0) cos(0) cos(0) cos(0) cos(0)
)

cos(1 · θ̂) =
(

cos(0) cos(π
4
) cos(π

2
) cos(3π

4
) cos(π) cos(5π

4
) cos(3π

2
) cos(3π

4
)
)

cos(2 · θ̂) =
(

cos(0) cos(π
2
) cos(π) cos(3π

2
) cos(2π) cos(5π

2
) cos(3π) cos(7π

2
)
)

cos(3 · θ̂) =
(

cos(0) cos(3π
4

) cos(3π
2

) cos(9π
4

) cos(3π) cos(15π
4

) cos(9π
2

) cos(21π
4

)
)

cos(4 · θ̂) =
(

cos(0) cos(π) cos(2π) cos(3π) cos(4π) cos(5π) cos(6π) cos(7π)
)

sin(1 · θ̂) =
(

sin(0) sin(π
4
) sin(π

2
) sin(3π

4
) sin(π) sin(5π

4
) sin(3π

2
) sin(7π

4
)
)

sin(2 · θ̂) =
(

sin(0) sin(π
2
) sin(π) sin(3π

2
) sin(2π) sin(5π

2
) sin(3π) sin(7π

2
)
)

sin(3 · θ̂) =
(

sin(0) sin(3π
4

) sin(3π
2

) sin(9π
4

) sin(3π) sin(15π
4

) sin(9π
2

) sin(21π
4

)
)

8

That is, the orthogonal bases in row wise are,

cos(0 · θ̂) =
(

1 1 1 1 1 1 1 1
)

cos(1 · θ̂) =
(

1 1√
2

0 −1√
2
−1 −1√

2
0 1√

2

)
cos(2 · θ̂) =

(
1 0 −1 0 1 0 −1 1

)
cos(3 · θ̂) =

(
1 −1√

2
0 1√

2
−1 1√

2
0 −1√

2

)
cos(4 · θ̂) =

(
1 −1 1 −1 1 −1 1 −1

)
sin(1 · θ̂) =

(
0 1√

2
1 1√

2
0 −1√

2
−1 −1√

2

)
sin(2 · θ̂) =

(
0 1 0 −1 0 1 0 −1

)
sin(3 · θ̂) =

(
0 1√

2
−1 1√

2
0 −1√

2
1 −1√

2

)
Now by normalizing each vector and arrange as the rows of a matrix, the orthonormal

basis matrix is obtained as,

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1
2

1
2
√

2
0 − 1

2
√

2
− 1√

2
− 1

2
√

2
0 1

2
√

2
1
2

0 −1
2

0 1
2

0 −1
2

0
1
2
− 1

2
√

2
0 1

2
√

2
−1

2
1

2
√

2
0 − 1

2
√

2
1√
8
− 1√

8
1√
8
− 1√

8
1√
8
− 1√

8
1√
8
− 1√

8

0 1
2
√

2
1
2

1
2
√

2
0 − 1

2
√

2
−1

2
− 1

2
√

2

0 1
2

0 −1
2

0 1
2

0 −1
2

0 1
2
√

2
−1 1

2
√

2
0 − 1

2
√

2
1 − 1

2
√

2


We can call these matrices as real DFT transform matrices. The following Matlab

code explains the creation of real DFT transform matrices. The basis matrix, D rep-

resents the row wise orthogonal bases and hence DDT is diagonal matrix. Then for

making the normalized bases, divide each row by its norm. Dnormalized represents

the orthonormal bases as column wise.

Matlab code

clc;clear all;close all;

N = 8;

theta = (0:N-1)*(2*pi/N);

9

D = [cos((0:N/2)’*theta);sin((1:N-(N/2+1))’*theta)]; %row wise orthogonal bases (D*D’=diagonal)

Dnormalized = [D(1,:)*sqrt(1/N); D(2:(N/2),:)*sqrt(2/N);D((N/2)+1,:)*sqrt(1/N);...

D((N/2)+2:end,:)*sqrt(2/N)]’ % column wise orthonormal bases

1.1.2 Sampling half cosine functions

Instead of sine and cosines, we can use multiples of half-cosine waves. By sampling

cosines functions which are integer multiples, half cosine waves (fundamental is created

by sampling the range 0 to Π). The sampling can be understood from the figure. In

the figure, red line shows the sampling location and the height value corresponds to the

elements of basis. If we have N-tuple data vector, we need N bases. These N bases are

created by taking N-equispaced samples from N cosine waves. It start sampling from

π
2N

with intervals of π
N

. We also need to normalize each bases to make it orthonormal

bases.

Figure 1.3: Visualization of discrete cosine transform

The following Matlab code explains the generation of discrete cosine bases. The

basis matrix D represents the row-wise orthogonal bases (DDT is diagonal matrix).

Then by dividing each row by its norm, the normalized bases are generated. Another

10

single line command for generating DCT bases are also given. The reader can verify

both using examples.

Matlab code

clc; clear all; close all;

N = 8; % length of the signal

k = zeros(N,1);

b = (0:N-1)*pi/N+pi/(2*N); % row vector

mul = (0:N-1)’; % column vector

D = cos(mul*b); % rowwise bases (D*D’=diagonal)

D = [D(1,:); D(2:end,:);]; % rowwise normalized bases

D’*D ;% Identity matrix

The intial step, D = cos(mul*b);, for cosine basis formation can be understood as an

outer-product operation asD = cos(mul⊗b). ForN = 4, b =
[

0.3927 1.1781 1.0635 2.7489
]
,

mul =
[

0 1 2 3
]T

,. The outer-product operation mul ⊗ b gives a matrix

mul ⊗ b =

0.3927 1.1781 1.0635 2.7489
0
1
2
3

That is,

mul ⊗ b =


0 0 0 0

0.3927 1.1781 1.9635 2.7489
0.7854 2.3562 3.9270 5.4978
1.1781 3.5343 5.8905 8.2467


Hence, the cosine operation will look like,

D = cos

 mul ⊗ b


11

Figure 1.4: Plot for discrete cosine transform

Another method-Matlab code

N = 4; % length of the signal

DCT = dct(eye(N)) % rowwise normalized bases

% OR

DCT = dctmtx(N) % rowwise normalized bases

1.1.3 Sampling half sine functions

Matlab code

clc; clear all; close all;

12

N = 8; % length of the signal

k = zeros(N,1);

b = (0:N-1)*pi/N+pi/(2*N); % row vector

mul = (0:N-1)’; % column vector

D = sin(mul*b); % rowwise bases (D*D’=diagonal)

D = [D(1,:); D(2:end,:);]; % rowwise normalized bases

D’*D ;% Identity matrix

Figure 1.5: Plot for discrete sine transform

13

1.1.4 Walsh-Hadamard transform

Kronecker product maps two arbitrarily dimensioned matrices into a larger block ma-

trix. Given an m× n matrix A and k × l matrix B,

A =

 a11 · · · a1n
...

. . .
...

am1 · · · amn


m×n

and B =

 b11 · · · b1l
...

. . .
...

bk1 · · · bkl


k×l

their Kronecker product, A⊗B is a larger block matrix of size mk × nl as follows,

A⊗B =

 a11B · · · a1nB
...

. . .
...

bm1B · · · bmnB


mk×nl

For example, given A =

[
1 0
−2 1

]
2×2

and B =

[
1 2 0
−1 4 3

]
2×3

, their Kronecker

product A⊗B of size 4× 6 is,

A⊗B =

 1

[
1 2 0
−1 4 3

]
0

[
1 2 0
−1 4 3

]
−2

[
1 2 0
−1 4 3

]
1

[
1 2 0
−1 4 3

]


4×6

=


1 2 0 0 0 0
−1 4 3 0 0 0
−2 −4 0 1 2 0
2 −8 −6 −1 4 3


4×6

Next, we are going to see how the concept of Kronecker product is used for generating

orthogonal Walsh - Hadamard bases of R8.

Let,A =

[
1 1
1 −1

]
2×2

, then B = A ⊗ A =

 1

[
1 1
1 −1

]
1

[
1 1
1 −1

]
1

[
1 1
1 −1

]
−1

[
1 1
1 −1

]


4×4

=


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


4×4

Now,

14

H = B ⊗ A =



1

[
1 1
1 −1

]
1

[
1 1
1 −1

]
1

[
1 1
1 −1

]
1

[
1 1
1 −1

]
1

[
1 1
1 −1

]
−1

[
1 1
1 −1

]
1

[
1 1
1 −1

]
−1

[
1 1
1 −1

]
1

[
1 1
1 −1

]
1

[
1 1
1 −1

]
−1

[
1 1
1 −1

]
−1

[
1 1
1 −1

]
1

[
1 1
1 −1

]
−1

[
1 1
1 −1

]
−1

[
1 1
1 −1

]
1

[
1 1
1 −1

]


8×8

and the Walsh-Hadamard base matrix is obtained as follows,

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


8×8

Dividing each row by 1√
N

gives the normalized bases. The following Matlab code

explains the Walsh Hadamard basis creation using kronecker product.

Matlab code

N = 8;

A = [1 1;1 -1];

B = kron(A,A);

H = kron(B,A); % orthogonal bases

Hnor = (1/sqrt(N))*H; % orthonormal bases

% The in-built command for creating Walsh Hadamard bases is,

H = hadamard(N)

15

Figure 1.6: Plot for Walsh-Hadamard bases

1.1.5 Orthogonal wavelet matrix using Haar scaling and wavelet
functions

Wavelet bases are sparse and localized bases (bases which are not spread across the

domain) and they allow the multi-resolution decomposition of signals. The ’Haar’

wavelet transform bases for representing a vector/signal in R8 is as follows,

W =
1√
2



1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1


8×8

The orthogonal bases are given as the rows of the above matrix W , and dividing each

16

term by
√

2 will give the orthonormal ’Haar’ wavelet bases. For example, consider an 8-

point signal, . Using the ’Haar’ wavelet transform matrix, the first-level decomposition

coefficients are obtained as, x =
[
x1 x2 x3 x4 x5 x6 x7 x8

]T
. Using the ’Haar’

wavelet transform matrix, the first-level decomposition coefficients are obtained as,

s(1)
s(2)
s(3)
s(4)
d(1)
d(2)
d(3)
d(4)


=

1√
2



1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1





x1

x2

x3

x4

x5

x6

x7

x8


Here,

[
s(1) s(2) s(3) s(4)

]
represents the low-pass filter coefficients and

[
d(1) d(2) d(3) d(4)

]
x =

[
x1 x2 x3 x4 x5 x6 x7 x8

]
represents the high-pass filter coefficients. The second level decomposition coefficients

are obtained as, 
ss(1)
ss(2)
ds(1)
ds(2)

 =
1√
2


1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1



s(1)
s(2)
s(3)
s(4)


While going for the third level,

[
sss(1)
dss(1)

]
=

1√
2

[
1 1
1 −1

] [
ss(1)
ss(2)

]

and the final decomposed structure is given as,

[
sss(1) dss(1) ds(1) ds(2) d(1) d(2) d(3) d(4)

]T
Let, ’k’ denotes the scale of transformation. For ’k=1’, the wavelet transformation

matrix will be,

17

W =



0.7071 0.7071 0 0 0 0 0 0
0 0 0.7071 0.7071 0 0 0 0
0 0 0 0 0.7071 0.7071 0 0
0 0 0 0 0 0 0.7071 0.7071

0.7071 −0.7071 0 0 0 0 0 0
0 0 0.7071 −0.7071 0 0 0 0
0 0 0 0 0.7071 −0.7071 0 0
0 0 0 0 0 0 0.7071 −0.7071



Figure 1.7: Plot for Haar wavelet bases,k=1

For ’k=2’,

W =



0.5 0.5 0.5 0.5 0 0 0 0
0 0 0 0 0.5 0.5 0.5 0.5

0.5 0.5 −0.5 −0.5 0 0 0 0
0 0 0 0 0.5 0.5 −0.5 −0.5

0.7071 −0.7071 0 0 0 0 0 0
0 0 0.7071 −0.7071 0 0 0 0
0 0 0 0 0.7071 −0.7071 0 0
0 0 0 0 0 0 0.7071 −0.7071


18

Figure 1.8: Plot for Haar wavelet bases,k=2

For ’k=3’,

W =



0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
0.3536 0.3536 0.3536 0.3536 −0.3536 −0.3536 −0.3536 −0.3536

0.5 0.5 −0.5 −0.5 0 0 0 0
0 0 0 0 0.5 0.5 −0.5 −0.5

0.7071 −0.7071 0 0 0 0 0 0
0 0.7071 −0.7071 0 0 0 0

0 0 0 0 0.7071 −0.7071 0 0
0 0 0 0 0 0 0.7071 −0.7071


In general, for an the 8-point signal, the coefficients can be obtained as (k =3),

sss(1)
dss(1)
ds(1)
ds(2)
d(1)
d(2)
d(3)
d(4)


=



0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
0.3536 0.3536 0.3536 0.3536 −0.3536 −0.3536 −0.3536 −0.3536

0.5 0.5 −0.5 −0.5 0 0 0 0
0 0 0 0 0.5 0.5 −0.5 −0.5

0.7071 −0.7071 0 0 0 0 0 0
0 0.7071 −0.7071 0 0 0 0

0 0 0 0 0.7071 −0.7071 0 0
0 0 0 0 0 0 0.7071 −0.7071





x1

x2

x3

x4

x5

x6

x7

x8


19

Figure 1.9: Plot for Haar wavelet bases,k=3

Matlab code

clc;clear all;close all;

N = 8;

% Set wavelet name. wname = ’haar’

% % [LoD,HiD,LoR,HiR] = wfilters(wname);

%WAVMAT returns a wavelet transformation matrix

% Input:

% N: matrix dimension, which is required to be power of 2.

% h: analysis lowpass filter

% g: analysis highpass filter

20

% k: number of scales of transformation

% Output:

% wmat: wavelet transformation matrix

h = LoD;

g = HiD;

k = 1;

W = wavmat(N, h, g, k)

W’*W; % Identity matrix

1.1.6 Orthogonal wavelet matrix using Daubechies scaling and
wavelet functions

W =



0.5 0.5 0.5 0.5 0 0 0 0
0 0 0 0 0.5 0.5 0.5 0.5

0.5 0.5 −0.5 −0.5 0 0 0 0
0 0 0 0 0.5 0.5 −0.5 −0.5

0.7071 −0.7071 0 0 0 0 0 0
0 0 0.7071 −0.7071 0 0 0 0
0 0 0 0 0.7071 −0.7071 0 0
0 0 0 0 0 0 0.7071 −0.7071


1.1.7 Complex exponential functions (DFT)

Orthogonal bases can be created by equispaced samples of complex exponentials. Ear-

lier, we created bases by sampling sine and cosine harmonic functions. We can combine

cosine and sine function with same frequency to create complex exponential function.

The ’exponential function’ play very important role in conventional signal processing.

The advantage of using complex exponential basis is that there exist an algorithm for

21

finding the transform (matrix-vector multiplication operation) in a very fast way. It

is called FFT (Fast Fourier Transform) and it is a matrix-free method. That is, the

algorithm never creates a basis matrix for transform operation. We will explain with

an example for vectors in 4. Consider a 4-tuple data, we sample the domain 0 to 2π as

before and find bases as rows in figure 1.10.

Figure 1.10: Complex Fourier basis

The above Fourier bases creation can also be understood using an outer-product

operation, denoted by⊗. Let ’index’ be a vector denoting the basis number and ’theta’

be a vector denoting angles.

index =


0
1
2
3


and

theta =
[

0 2π
4

π 6π
4

]
Let M ∈ 4×4be a matrix, formed using outer-product operation, M = index⊗theta.

That is,

M =


0 0 0 0
0 1.5708 3.1416 4.7124
0 3.1416 6.2832 9.4248
0 4.7124 9.4248 14.1372


22

basis matrix will be formed using a single command in Matlab as exp(j × M).

jdenotes the complex number.

exp

j ×


0 0 0 0
0 1.5708 3.1416 4.7124
0 3.1416 6.2832 9.4248
0 4.7124 9.4248 14.1372


 =


1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j


← 1stbasis
← 2ndbasis
← 3rdbasis
← 4thbasis

For normalizing these basis, divide each row by its norm and hence the normalized

bases are given as,

1

2


1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j


It can be shown that, for this theta, ej3θ = e−j1θ. The integer multiplier in the

exponent corresponds to number of full waves within sampling period T. (later we will

relate this new identity to aliasing). Now explain the process for N=8 samples. The

bases for N=8 is as shown in figure. Bases are shown as column vectors. We may

interpret the integer multiplier in the exponent as wave number. Note how bases with

different wave numbers are arranged in a DFT matrix (in the figure it is in columns).

Try to understand the physical interpretaion of negative wave number from the figure

1.11.

So complex form of DFT is based on the following fact

1. Continous domain Fourier series bases, bm = 1√
T
ejmΩt, bn = 1√

T
ejnΩt with Ω = 2π

T
is

orthonormal since
T∫

0

bmb̄ndt = 0ifm 6= n, 1ifm = n

23

Figure 1.11: basis for N=8

Note that in case complex quantity is involved inner product definition is modified

as, 〈bm, bn〉 =
T∫
0

bmb̄ndt

2. Sampling such bases lead to discrete domain complex bases.

3. N-point DFT is created with N bases starting from wave number 0 to wave number

N-1.

However we treat bases starting from N/2 +1 onwards as negative wave numbers

as in 1.11. This can be easily verified. Alternately we can think of bases after N/2th

basis are negative wave number basis. This in fact a necessity for representing real

signals. We know cos Ωt = ejΩt+e−jΩt

2
. That is we need positive wave number bases

and negative wave number bases to represent a real signal. For N=8, the sampling

instances for creating the bases are given as,
_

θ =
[

0 · 2π
8

1 · 2π
8

2 · 2π
8
· · · 7 · 2π

8

]
and the following matrix represents the normalized bases as columns,

24

1√
8



1 1 1 1 1 1 1 1

1 C j −
√

2 + j
√

2 −1 −
√

2− j
√

2 −j
√

2− j
√

2
1 j −1 −j 1 j −1− j −j
1 −

√
2 + j

√
2 −j

√
2 + j

√
2 −1

√
2− j

√
2 j −

√
2− j

√
2

1 −1 + j 1− j −1 + j 1 −1− j 1 + j −1− j
1 −

√
2− j

√
2 j

√
2− j

√
2 −1

√
2 + j

√
2 −j −

√
2 + j

√
2

1 −j −1− j j 1 −j −1 + j j

1
√

2− j
√

2 −j −
√

2− j
√

2 −1 −
√

2 + j
√

2 j
√

2 + j
√

2



Figure 1.12: Illustation

The following Matlab code explains the generation of complex DFT matrix as rows

of basis vector.

Matlab code for creating DFT matrix as rows as basis vectors

N = 4;

b = [(0:N-1)*2*pi/N] ;

% row vector

mul = [0:N-1]’ ;

% column vector

25

bm = exp(i*mul*b);

% row wise basis vectors

DFTmatrix =(1/sqrt(N)*bm) % rowwise normalized bases

The following Matlab code explains the generation of complex DFT matrix as rows

as conjugate of basis vector. The single line command for the same complex DFT ma-

trix is also given. reader can verify both through examples.

Matlab code for creating DFT matrix as rows as conjugate of basis vec-

tors

clc;clear all;close all;

N = 4;

% length of the signal

b = (0:N-1)*2*pi/N;

% row vector

mul = (0:N-1)’ ;

% column vector

bm = exp(-i*mul*b)

% conjugate as basis vectors (row wise)

DFTmatrix = sqrt(1/N)*bm;

% Rows as conjugate of basis vectors (normalized)

26

Another method - dft = fft(eye(N))

1.1.8 Applications of DFT

1. Getting approximate spectral content of a signal

2. Convolution operation- doing covolution of two time domian signals by multipli-

cation of corresponding elements in Fourier domain and then inverse transforming

3. Digiatal filtering

1.2 Creation of Bi-Orthogonal bases

1.2.1 Bi-Orthogonal Wavelet matrix using Daubechies bi-
orthogonal scaling and wavelet functions

wname = ’bior3.3’;

% Set wavelet name
LoD, HiD, LoR, HiR

= wfilters(wname);

N = 8;

k = 2;

W1 = wavmat(N,LoD, HiD, k);

W2 = wavmat(N,LoR, HiR, k);

W1 ∗W2′

%Identitymatrix

27

1.2.2 Bi-Orthogonal Wavelet matrix using spline scaling
and wavelet functions

Now the question is how do we use these bases and how do we interpret transforms.

We can interpret matrix vector multiplication in two ways.

(a) A linear combination

Figure 1.13: Illustration of matrix-vector multiplication as linear combination

(b) A series of dot products (we call it as projections)

We can relate this operation with forward and inverse transform in signal process-

ing. When we have basis in columns we take linear combination interpretation.

When we have basis in rows we go for dot product interpretation. Therefore,

the linear combination interpretation correspond to inverse transform and the

dot product interpretation correspond to forward transform in signal processing.

Consider an example in R4. Let x represents the signal, A represents the basis

28

Figure 1.14: Illustration of matrix-vector multiplication as a series of dot products

transform matrix and yrepresents the transform coefficients. The normalized sine

and cosine basis created earlier are taken and we put as columns of a matrix A

as follows,

A =


1
2

1√
2

1
2

0
1
2

0 −1
2

1√
2

1
2
− 1√

2
1
2

0
1
2

0 −1
2
− 1√

2


Here, we have basis as column and hence we go for linear combination interpreta-

tion. Now try to express xas a linear combination of bases and be the coefficient

vector. Then x = Ax, that is,

|
x
|

= y1

|
b1

|
+ y2

|
b2

|
+ · · ·+ yn

|
bn
|

29

Figure 1.15: Illustration of x = Ax

That is,


x1

x2

x3

x4

 =


1
2

1√
2

1
2

0
1
2

0 −1
2

1√
2

1
2
−1√

2
1
2

0
1
2

0 −1
2

−1√
2



y1

y2

y3

y4



x1

x2

x3

x4

 = y1


1
2
1
2
1
2
1
2

+ y2


1√
2

0
−1√

2

0

+ y3


1
2
−1
2
1
2
−1
2

+ y4


0
1√
2

0
−1√

2


Since A is orthogonal to y = ATx

y =


y1

y2
...
yn

 =


〈x, b1〉
〈x, b2〉
〈x, b3〉
〈x, b4〉


Note that in AT , the basis are in rows. So here we give dot product interpretation.

That is,


y1

y2

y3

y4

 =


1
2

1
2

1
2

1
2

1√
2

0 −1√
2

0
1
2

−1
2

1
2

−1
2

0 1√
2

0 −1√
2



x1

x2

x3

x4


Now, combining the above two equation we get

30

Figure 1.16: Illustration of x = Ax

|
x
|

= y1

|
b1

|
+ y2

|
b2

|
+ · · ·+ yn

|
bn
|

Note that in case bases b are discretized version of

(a) real function then 〈x, bi〉 = xT bi

(b) complex exponential function, then 〈x, bi〉 = xT b̄i, where superscript - stand

for complex conjugation (of each element of vector)

It is left to reader to find the reason for necessity of such a twist in the definition

of inner product. Readers can verify that the equation
|
x
|

= y1

|
b1

|
+ y2

|
b2

|
+

· · ·+ yn

|
bn
|

is true for real signal x if and only if we define inner product in that

way. If you are able to appreciate the formula
|
x
|

= y1

|
b1

|
+ y2

|
b2

|
+ · · ·+ yn

|
bn
|

you have already studied a big part of conventional signal processing.

31

1.2.3 Example 1: Real function

Consider a vector,

x =


1
2
5
3

 , the real DFT transform matrix, A =


1
2

1√
2

1
2

0
1
2

0 −1
2

1√
2

1
2
−1√

2
1
2

0
1
2

0 −1
2

−1√
2


, here the basis are the columns of A and ybe the transform coefficients. Now

express vector xas the linear combination of bases as follows, x = Ayand which

represents the forward transform.
1
2
5
3

 =


1
2

1√
2

1
2

0
1
2

0 −1
2

1√
2

1
2
−1√

2
1
2

0
1
2

0 −1
2

−1√
2



y1

y2

y3

y4




1
2
5
3

 = y1


1
2
1
2
1
2
1
2

+ y2


1√
2

0
−1√

2

0

+ y3


1
2
−1
2
1
2
−1
2

+ y4


0
1√
2

0
−1√

2


The transform coefficients can be obtained by inverse transform as, y = ATx
y1

y2

y3

y4

 =


1
2

1
2

1
2

1
2

1√
2

0 −1√
2

0
1
2

−1
2

1
2

−1
2

0 1√
2

0 −1√
2




1
2
5
3


Here, we go for the dot product interpretation as follows,

y1 =
[

1
2

1
2

1
2

1
2

] 
1
2
5
3

 , y2 =
[

1√
2

0 −1√
2

0
]

1
2
5
3

 ,

y3 =
[

1
2
−1
2

1
2
−1
2

] 
1
2
5
3

 , y4 =
[

0 1√
2

0 −1√
2

]
1
2
5
3


32

On solving this, the coefficients are obtained as,


y1

y2

y3

y4

 =


11
2

−2
√

2
1
2
−1√

2


Now, 

1
2
5
3

 =
11

2


1
2
1
2
1
2
1
2

+−2
√

2


1√
2

0
−1√

2

0

+
1

2


1
2
−1
2
1
2
−1
2

+
−1√

2


0
1√
2

0
−1√

2


That is, 

1
2
5
3

 =
|
x
|

=
〈
x, b̄1

〉 |
b1

|
+
〈
x, b̄2

〉 |
b2

|
++

〈
x, b̄n

〉 |
bn
|

1.2.4 Example 2: Complex function

Consider a vector, x =


1
2
5
3

 , the complex DFT transform matrix, A =


1
2

1
2

1
2

1
2

1
2

i
2

−1
2

−i
2

1
2
−1
2

1
2

−1
2

1
2

−i
2

−1
2

−i
2


, here the basis are the columns of A and ybe the transform coefficients. Now

express vector xas the linear combination of bases as follows, x = Ayand which

represents the forward transform.
1
2
5
3

 =


1
2

1
2

1
2

1
2

1
2

i
2

−1
2

−i
2

1
2
−1
2

1
2

−1
2

1
2

−i
2

−1
2

−i
2



y1

y2

y3

y4




1
2
5
3

 = y1


1
2
1
2
1
2
1
2

+ y2


1
2
i
2
−1
2
−i
2

+ y3


1
2
−1
2
1
2
−1
2

+ y4


1
2
−i
2
−1
2
−i
2



33

Now the transform coefficients can be obtained by inverse transform as, y = ATx.

Since Ais the complex DFT matrix, AT represents the complex conjugate basis

vectors of Aas row-wise.
y1

y2

y3

y4

 =


1
2

1
2

1
2

1
2

1
2

i
2

−1
2

−i
2

1
2
−1
2

1
2

−1
2

1
2

−i
2

−1
2

−i
2




1
2
5
3


Here we go for the dot product interpretation as follows,

y1 =
[

1
2

1
2

1
2

1
2

] 
1
2
5
3

 , y2 =
[

1
2
−i
2

−1
2

i
2

] 
1
2
5
3

 ,

y3 =
[

1
2
−1
2

1
2
−1
2

] 
1
2
5
3

 , y4 =
[

1
2

i
2
−1
2

−i
2

] 
1
2
5
3


On solving, the coefficients obtained are,
y1

y2

y3

y4

 =


5.5

−2 + 0.5i
0.5

−2− 0.5i


Now,

1
2
5
3

 = 5.5


1
2
1
2
1
2
1
2

+ (−2 + 0.5i)


1
2
i
2
−1
2
−i
2

+ 0.5


1
2
−1
2
1
2
−1
2

+ (−2− 0.5i)


1
2
−i
2
−1
2
i
2


That is, 

1
2
5
3

 =
|
x
|

= 〈x, b1〉
|
b1

|
+ 〈x, b2〉

|
b2

|
++ 〈x, bn〉

|
bn
|

34

1.3 Least Squares in Signal Processing

1.3.1 Concept of Least Square fitting

If the function is convex and differentiable, we can obtain optimum point - the lo-

cation x∗ at which the function value is minimum by applying first order condition

that

∇f(x∗) = 0(vector)

. We start with single variable linear regression problem. Let,

(x1, y1) , (x2, y2) ,, (xn, yn)

be the given data points. The scatter diagram be as shown in figure 1.18. We

have to find slope m and intercept c of the regression line given by, y = mx+ c .

In matrix form the problem is formulated as,

z∗ =

(
m
c

)
= arg min

z
‖Az − y‖2

2

where

Az = y + eis


x1 1
x2 1
. .
xn 1


A

[
m
c

]
z

=


y1

y2

.
yn


y

+


e1

e2

.
en


e

The objective function is basically

eT e = (Az − y)T (Az − y) = ‖Az − y‖2
2

35

Figure 1.17: Non-linear data

wehre

eT e = e2
1 + e2

2 ++ e2
n

is sum of square of errors. This in turn depends on m and c which in compact

form is the vector z. The optimal value of m and c should minimize the sum of

square of errors. Note that error term e1, e2etc can assume positive and negative

values. Therefore we go for minimization of error sum of square rather than error

sum. Now how do we find optimalz?. We apply first order condition. We have

f(z) = (Az − y)T (Az − y) = ‖Az − y‖2
2

∇f(z) = 0⇒ 2AT (Az − y) = 0⇒ z∗ = (ATA)−1ATy

If columns of A are independent ATAis invertible. If not

z∗ = A+y = pinv(A) ∗ y

Let us have another example where the regression function is non-linear. Let us

consider a case where relationship between x and yis not linear. For example,

36

consider the data shown in figure 1.18. Here, y = mx+ cwill not be a proper fit.

Let us consider fitting 6th degree polynomial of the form

y = a0 + a1x+ a2x
2 + ...+ a6x

6

For each x and yvalue. We formulate a matrix equation of the form,

Az = y + e

where,

A =


1 x1 x2

1 x3
1 x4

1 x5
1 x6

1

1 x2 x2
2 x3

2 x4
2 x4

2 x6
n

.
1 xn x2

n x3
n x4

n x4
n x6

n

 , z =


a0

a2
...
a6

 , y =


y1

y2
...
yn

 , e =


e
e2
...
en


and obtain

z∗ = arg min
z
‖Az − y‖2

2

The solution again is

z∗ = (ATA)−1ATy

. Let us find for the following data.

Figure 1.18: Non-linear regression

37

Matlab code % Sinc function data (for non-linear regression) generation

% data generation

x = linspace(-3,3,50);

y = sin(pi*x)./(pi*x);

noise = 0.2*randn(1,50);

yn = y+noise;

x = x’; yn = yn’;

% parameter estimation

A = [ones(50,1) x x.2x.3x.4x.5x.6];

z = pinv(A) ∗ yn;

yp = A ∗ z;

%Plotting

plot(x, y);holdon;

plot(x, yn,′ ∗′);holdon;xlabel(′x′); ylabel(′y′)

plot(x, yp,′ ro′);xlabel(′x′); ylabel(′y′)

Least square method can provide approximate solution to linear system of equations. It

can be applied to several signal processing problems such as smoothing, deconvolution,

missing data estimation, linear prediction etc. The method of least squares (LS) is ex-

tremely important and it makes good sense for many practical problems. The approach

dates back to Gauss who in 1795 introduced the method to study planetary motions.

38

Thinking in term of statistical signal processing, we are assuming a static model with

error signal orthogonal to model space. Or in other words no probabilistic assumptions

are made about the data, only a signal model is assumed. This static model many times

are expressed in terms of sparsity of the signal with respect to its transform coefficients

or sparsity in terms of the local derivatives or smoothness. Usually the algorithm is easy

to implement, either in a blockbased or sequential manner. This amounts to the mini-

mization of a quadratic cost function. Within the least squares approach we attempt to

minimize the squared difference between the observed data and the assumed model of

noiseless data. One drawback of this approach is that rigorous statistical performance

cannot be assessed without some specific assumptions about probabilistic structure in

the data. We can solve least squares problem in block or in sequential. Weighted least

squares method allow to assign confidence to samples. We can also use a forgetting

factor to deal with time-varying statistics. A number of applications of least squares

theory: adaptive noise cancellation, digital filter design, Prony type spectral estimation,

and many more. This session explains the solutions to the linear system of equations by

least squares method and its applications in solving some important signal processing

problems like signal denoising, deconvolution, missing sample estimation. Also these

problems are extended to images and the solution is obtained via least square method.

1.3.2 Over and Underdetermined Systems

Consider an over-determined system y = Ax, where Ais a tall matrix with linearly

independent columns. The solution to this over determined system is obtained by

39

minimizing the energy of the error, x∗ = arg min
x
‖y − Ax‖2

2

f(x) = ‖y − Ax‖2
2 = (y − Ax)T (y − Ax)

= yTy − yTAx− xTATy + xTATAx

= yTy − 2yTAx+ xTATAx
(

(yTAx)
T

= xTATy
)

Differentiating with respect to x and equating to zero gives,

∂

∂x
f(x) = −2ATy + 2ATAx

(
(ATy)

T
= yTA⇒ yTAx = (ATy)

T
x
)

∂

∂x
f(x) = 0 ⇒ ATAx = ATy

Then the least square solution for xis obtained as, x = (ATA)−1ATy

Now, consider an under-determined system of equations,y = Ax, where A contains

linearly independent rows. A in this case will be a wide matrix. The minimum norm

solution can be obtained as

min
x
‖x‖2

2

such that y = Ax

The Lagrangian function corresponds to above optimization problem is defined as,

L(x, µ) = ‖x‖2
2 + µT (y − Ax)

Take the derivatives of the Lagrangian and equating to zero gives,

∂
∂x
L(x) = 2x− ATµ⇒ x = 1

2
ATµ

∂
∂λ
L(x) = y − Ax ⇒ y = Ax

By substituting the value of in yields, y = 1
2
AATµ⇒ µ = 2(AAT)−1y

Now the least norm solution for x is obtained as, x = AT (AAT)−1y

40

References

[1] Adelfio, G. (2012). Change-point detection for variance piecewise constant

models. Communications in Statistics - Simulation and Computation. 41(4):

437 - 448.

[2] Aharon, M., Elad, M. and Bruckstein, A. (2006). On the uniqueness of over-

complete dictionaries, and a practical way to retrieve them. Linear Algebra

and its Applications. 416: 48 - 67.

41

